High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses
نویسندگان
چکیده
BACKGROUND It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses. METHOD Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting. RESULTS Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more) and high (50%) object's breaking force. The time to complete the task was not different between settings during successful manipulation trials. CONCLUSION High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs.
منابع مشابه
Efficiency of voluntary closing hand and hook prostheses.
The Delft Institute of Prosthetics and Orthotics has started a research program to develop an improved voluntary closing, body-powered hand prosthesis. Five commercially available voluntary closing terminal devices were mechanically tested: three hands [Hosmer APRL VC hand, Hosmer Soft VC Male hand, Otto Bock 8K24] and two hooks [Hosmer APRL VC hook, TRS Grip 2S]. The test results serve as a de...
متن کاملGrip Force Using an Artificial Limb in a Congenital Amputee
While much attention is being given in the application of advanced technologies to improve upper extremity prostheses, traditional body-powered prostheses still remain the most popular by people with an amputation. A body-powered prosthesis provides the user with a reasonable solution for limb loss given their simple design, lower maintenance and initial cost. The two major types of body-powere...
متن کاملFatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency
BACKGROUND Body-powered prostheses require cable operation forces between 33 and 131 N. The accepted upper limit for fatigue-free long-duration operation is 20% of a users' maximum cable operation force. However, no information is available on users' maximum force. OBJECTIVES To quantify users' maximum cable operation force and to relate this to the fatigue-free force range for the use of bod...
متن کاملIs body powered operation of upper limb prostheses feasible for young limb deficient children?
The investigators measured efficiencies of body powered prehensors and cable control components of prostheses available for young children. Results indicated that the cable control systems and hook type prehensors have moderate to high efficiencies, but children's body powered hands have very low efficiencies. Measures of arm and shoulder strength of 3-5 year-old limb deficient children, both o...
متن کاملDesign and evaluation of voluntary opening and voluntary closing prosthetic terminal device.
Body-powered prostheses use a cable-operated system to generate forces and move prosthetic joints. However, this control system can only generate forces in one direction, so current body-powered prehensor designs allow the user either to voluntarily open or voluntarily close the tongs. Both voluntary opening (VO) and voluntary closing (VC) modes of operation have advantages for certain tasks, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017